Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Pediatr ; 11: 1193832, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37342535

RESUMEN

Gut metagenome in pediatric subjects with metabolic syndrome (MetS) and type-2 diabetes mellitus (T2DM) has been poorly studied, despite an alarming worldwide increase in the prevalence and incidence of obesity and MetS within this population. The objective of this study was to characterize the gut microbiome taxonomic composition of Mexican pediatric subjects with MetS and T2DM using shotgun metagenomics and analyze the potential relationship with metabolic changes and proinflammatory effects. Paired-end reads of fecal DNA samples were obtained through the Illumina HiSeq X Platform. Statistical analyses and correlational studies were conducted using gut microbiome data and metadata from all individuals. Gut microbial dysbiosis was observed in MetS and T2DM children compared to healthy subjects, which was characterized by an increase in facultative anaerobes (i.e., enteric and lactic acid bacteria) and a decrease in strict anaerobes (i.e., Erysipelatoclostridium, Shaalia, and Actinomyces genera). This may cause a loss of gut hypoxic environment, increased gut microbial nitrogen metabolism, and higher production of pathogen-associated molecular patterns. These metabolic changes may trigger the activation of proinflammatory activity and impair the host's intermediate metabolism, leading to a possible progression of the characteristic risk factors of MetS and T2DM, such as insulin resistance, dyslipidemia, and an increased abdominal circumference. Furthermore, specific viruses (Jiaodavirus genus and Inoviridae family) showed positive correlations with proinflammatory cytokines involved in these metabolic diseases. This study provides novel evidence for the characterization of MetS and T2DM pediatric subjects in which the whole gut microbial composition has been characterized. Additionally, it describes specific gut microorganisms with functional changes that may influence the onset of relevant health risk factors.

2.
BMC Pediatr ; 23(1): 210, 2023 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-37138212

RESUMEN

BACKGROUND: Childhood obesity is a serious public health concern that confers a greater risk of developing important comorbidities such as MetS and T2DM. Recent studies evidence that gut microbiota may be a contributing factor; however, only few studies exist in school-age children. Understanding the potential role of gut microbiota in MetS and T2DM pathophysiology from early stages of life might contribute to innovative gut microbiome-based interventions that may improve public health. The main objective of the present study was to characterize and compare gut bacteria of T2DM and MetS children against control subjects and determine which microorganisms might be potentially related with cardiometabolic risk factors to propose gut microbial biomarkers that characterize these conditions for future development of pre-diagnostic tools. RESULTS: Stool samples from 21 children with T2DM, 25 with MetS, and 20 controls (n = 66) were collected and processed to conduct 16S rDNA gene sequencing. α- and ß-diversity were studied to detect microbial differences among studied groups. Spearman correlation was used to analyze possible associations between gut microbiota and cardiometabolic risk factors, and linear discriminant analyses (LDA) were conducted to determine potential gut bacterial biomarkers. T2DM and MetS showed significant changes in their gut microbiota at genus and family level. Read relative abundance of Faecalibacterium and Oscillospora was significantly higher in MetS and an increasing trend of Prevotella and Dorea was observed from the control group towards T2DM. Positive correlations were found between Prevotella, Dorea, Faecalibacterium, and Lactobacillus with hypertension, abdominal obesity, high glucose levels, and high triglyceride levels. LDA demonstrated the relevance of studying least abundant microbial communities to find specific microbial communities that were characteristic of each studied health condition. CONCLUSIONS: Gut microbiota was different at family and genus taxonomic levels among controls, MetS, and T2DM study groups within children from 7 to 17 years old, and some communities seemed to be correlated with relevant subjects' metadata. LDA helped to find potential microbial biomarkers, providing new insights regarding pediatric gut microbiota and its possible use in the future development of gut microbiome-based predictive algorithms.


Asunto(s)
Diabetes Mellitus Tipo 2 , Microbioma Gastrointestinal , Síndrome Metabólico , Obesidad Infantil , Humanos , Niño , Adolescente , Bacterias/genética , Biomarcadores , ARN Ribosómico 16S/genética
3.
Gut Microbes ; 13(1): 1960135, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34491882

RESUMEN

Childhood obesity and T2DM have shown a recent alarming increase due to important changes in global lifestyle and dietary habits, highlighting the need for urgent and novel solutions to improve global public health. Gut microbiota has been shown to be relevant in human health and its dysbiosis has been associated with MetS, a health condition linked to the onset of relevant diseases including T2DM. Even though there have been recent improvements in the understanding of gut microbiota-host interactions, pediatric gut microbiota has been poorly studied compared to adults. This review provides an overview of MetS and its relevance in school-age children, discusses gut microbiota and its possible association with this metabolic condition including relevant emerging gut microbiome-based interventions for its prevention and treatment, and outlines future challenges and perspectives in preventing microbiota dysbiosis from the early stages of life.


Asunto(s)
Bacterias/metabolismo , Diabetes Mellitus Tipo 2/patología , Microbioma Gastrointestinal/fisiología , Síndrome Metabólico/microbiología , Obesidad Infantil/microbiología , Bacterias/clasificación , Niño , Disbiosis , Conducta Alimentaria , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...